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ABSTRACT

This paper considers approximation of continuous functions on a compact

metric space by generalized rational functions for which the denominators

have bounded coefficients and are bounded below by a fixed positive function.

This lower bound alleviates numerical difficul ties, and in some appl ications

(e.g., digital filter design) has a useful physical interpretation . A ’~zero

in the convex hul l~~characterization of best approximations is developed and

used to prove uniqueness and de Ia Vall~~ Poussin results. Examples are

given to illustrate this theory and its differences with the standard theory,

where the denominators are merely required to be positi ve. A modified

differential correction algori thm is presented and is proved to always

converge at least linearly , and often quadratically.
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1. Introduction

In this paper we consider approximation of continuous functions by

generalized rational functions whose denominators are required to be

bounded away from zero. This is in contrast to the standard theory where

the denominators are only required to be positive. There are at least

four reasons for having this stronger requirement, namely

1) best approximations always exist;

2) iterative procedures for computing rational approximations may

experience numerical difficulties if the denominators of the

rational functions become very small;

3) eves if a good rational approximation is found, it may not be

very useful if its denominator is too small at some point;

4) there may be some physical advantage in being abl e to control

the denominator. For example, McCallig (6] has used a version

of the algori thm described tn  this paper to compute approximations

to -the desired magnitude-squared response of a digi tal filter;

control of the denominator of the rational function amounts to

control of the feedback gain of the resulting filter, which allows

one to progress smoothly from “fully recursive” fil ter designs to

nonrecursive designs, and to reduce sensitivity problems and hardware

requirements.

Formally, the situation we are considering is as follows. X is a compact

metric space, m and n are fixed positive integers, P and Q are subspaces of

C[X] with bases {O
i~ 

... , em) and ~~~~~~~ ~~~~~~
‘ *n}~ 

respectively, and L is a

strictly positive continuous function on X (which is often a constant In

practice). Our family of approximating functions is then defined to be

= {P/Q: P p101 
+ ... + Pm0m €~

l)
~ 

Q = ql*l + ... +
Q L on X, Icij i ~~. 1 for i = 1 , ...~~ n}.
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We note In passing that wi thout the restrictions Ici~I < 1, the restric

tion Q > L would be no stronger than the more usual restriction Q > 0,.

since it could always be satisfied by multiplying P and Q by a sufficiently

large positive constant.

In order that be nonempty, Q must contain at least one strictly
positive function, so without loss of generality we will assume > 0 on

X. To Insure ~ 0 and for other reasons which will be clearer later,

we will also assume max L(x) < mm *1 (x); this requirement Is no restrictionxEX xeX
in practice, since it can always be obtained by mul tiplying 

~i 
by a suitable

positive constant.
Given f E C[X], a best approximation to f is defined to be a function

R* ERL such that II~ 
- R*lj  < f if  

- Rh for all RER L. where for g€ CCX],

ilgil = max~g(x)~. The following theorem can be proved by standard techniques.
xeX

THEOREM 1. If f 6 CEX], then there exists a best approximation to f from

R1.

In the remaining sections we will consider characterization of best

approximations, uniqueness, de La Val lée Poussin results, and computation

of best approximations by a modified differential correction algorithm.

The theory differs in some respects from the restricted range situation ,

where the entire rational function rather than just the denominator is

restricted.

Suppose f~~ CCX] and R*ERL, where R* p*fQ* = (p~r~1 + ... +
(q~*1 + ... + q~p~). The following notation will be useful .

a(x) = f(x) - R*(x) yx € X;
p + R*Q = (~I + R*Q : Pe P, Q EQ} ;

_  __ _
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= {x € X: If(x) - R*(x) I = h f  - R*hI );

V0 = fy E X: Q*(y) = L(y)};

lo = 
~ E {l, ..., 

n}:  = 1);

S = {a(x)~: x 6 X0} Li {~(y): y ~ Y0} LI (q~~~~: j E I~} where
(e 1 (x), .•.

~~ °m(’~
)’ R*(x)*1 (x) , •..,

= (0, ..., 0, -~1(y), ..., -*~
(
~)) T and 

~k 
= (61k, ••

~~~
‘ 

~~~~~~~~~~~

6 ~ Kronecker delta;
k

= the convex hull of S = { 
~ 

A~s~: k is a positive integer, i -1=]
k

s~eS Vi , A~ >O VI, ~ = 1);
1=1

lnt W(S) = the interior of~~tS).

2. Characterization

We first prove a kolmogorov-type characterization theorem.

THEOREM 2. Suppose f 6 C[X] - RL. Then R* = P*/Q* ~ 
RL is a best approxi-

mation to f iff there is no P = 
~~~~~~~ Pm0m €l)

~ Q = p1*1 “~%*n 6 Q
satisfying

(i) sgn(P + R*~)(x) = sgn(f(x) - R*(x)) Vx 6

( i i )  ~(y) < 0  yyE Y0;

(iii) qj > 0 if q~ = 1;

( 1v)~~~ < 0 i f q~~=- l .

Proof:

( *) :  Suppose R* is not a best approximation. Then there is a better

approximation R = P/Q G RL. By our assumptions in the previous section ,

we have (max L(x)) / (mi n 4~1(x )) < 1; letting a be any number satisfying
x€X x€X

_ _  

- TT I-i IT~T .
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(ma x L(x))/ (min *1(x ) )  a < 1, we define Q = q~q,1 + ... + Q by
xeX XEX

= Q* - a~1. Then satisfies ~(y) < 0 Vy 6Y0, ?j~ > 0 if q~ = 1 ,

and < 0 if q~ = -1. Now define P P - P~, Q - Q + ni~, where r~
is a positive number. For x € X0, we have

“Isgn(P + R*Q)(x) = sgn(P - P* + R*(Q* - Q + nQ))(x) = sgn(P - R*Q + nR*Q)(x)

= sgn{Q(x) [(R(x) - R*(x) + R*(x)~ (x) )]}

= sgn[f(x) - R*(x) - (f(x) - R(x)) + n9]~~~~
Now choosing r~ so small that ~*~~~

)() I < h f  - ~~ - - R u  Vx e X0,
we have

sgn(P + R*~)(x ) = sgn(f(x) - R*(x)) Vx e
so (i) holds. For y € Y0, we have

~(y) = Q*(y) - Q(y) + ii~(y) < L(y) - L(y) + r~(y) < 0 ,
so (ii) holds. If q~ = 1 , we have

= q~ - qj + fl~~j  .~~~ 1 - 1 + fl~ j  > 0, so (iii) holds.

If -1, we have

z q~ - qj + < -l - (-1) + < 0, so (iv) holds.

(~~): Suppose there exists PEP , ~~~~ satisfying (i)-(iv) above. Let

x be a small positive number. Then

~~~~~ p* ~~~+p *~ P + R *~
- 

- X
(Q~~~~ ) 

- 

-

_ _ _ _ _  P* P + ~ *~Thus f - 

— 
~~ f — - A— 

- 

, and using the arguments of

[2, pp. 159-160] it can be shown that ~f - < h f  - for all

P* + xPx sufficiently small. It remains only to show that 
Q* - ~ ~ ‘~L for A

sufficiently small.

-
S ~~~~~~~~~~~~~~~~~~~ 

- . 
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Vy 6 Y0, we have

Q*(y) - x~(y) > Q*(y) = L(y). -

Since is compact, there exists c > 0 such that ~(y) < -
~~~ Vy 6 V0. Let

V1 = {x € X: ~(x)  < — - ~~}, V2 = X - V1. Then V2 is compact, with V2 r~ V0 = 0.

Let ii = min{Q*(x) - L(x): x > 0. Choose A to satisfy 0 < A < max(1, II~~II Y

Then if xE Y1, we have Q*(x) - AQ(x) > Q*(x) > 1(x); if xe V~, we have

Q*(x) - AQ(x ) > L(x) + i~ - AQ(x) L(x), so Q*(x) - xQ(x) > L(x) Vx e X.
Finally, if q~ = 1 we have

q~~— A ~~~~1 — A q ~~< l ,

and if q~ = -l we have

so choosing A sufficiently small will insure that ~~ - A~~~) < 1,  i = 1, ..., n.

Thus for A sufficiently smal l we have € R and h1~ - 
P* + A~~11 < h f  - ~~-II

Q* AQ I Q* AQ Q

so is not a best approximation.

Q.E.D.

We can now prove a “zero in the convex hull” characteri zation of best

approximations .

THEOREM 3. Suppose f ~~~ CEX] - RL. Then R* = P*/Q* ERL is a best approxi-

mation to f iff the origin of (m + n)-space lies in the convex hull of S

(where S Is the set defined in the introduction).

Proof: By the theorem on linear inequal ities [2 , p. 19], 0 ~ 14(S)

1ff the system of Inequalities

<z , s> > 0, s € S

_______________________ -— ~~

-
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is consistent (here < , > denotes inner product). But this is true 1ff

3 a vector z = [z1, ... , ~~~~ satisfying

a(x)[z1e1 (x) + ... + z~o,,~(x) + R*(x)(z~~1 q,1 (x) + ... + z~~ *~(x))] > 0

Yx € X0;

z,~.,.1*1 (y) 
+ ... + ~~~~~~ < 0 V.y e

> 0 if q~ = 1; and

Z~~j < 0 if q~ = -1.

Letting P = z1e1 + ... + ZmOm and ~ = z,~~*1 + ... + z,,*n*n~ 
we see by

Theorem 2 that this is true 1ff R* is not a best approximation . Thus
OE W1S) iff R* is a best approximation.

- Q.E.D.

We illustrate the applicati on of this theorem wi th the following

example.

EXAMPLE 1. Let X = {0, 1), f(x) =x, P = = the set of all polynomials

of degree < 0, Q = n~, L(x) .1, R*(x) = .&/(1 - .9x). We have X0 = {0, 1),

V0 = (1), Io { l} , c~(O) = -1 , ~(1) = 1. Thus

e1(x) P 
[-i 1 0 0

a(x) (R%1Xx) = a(x)J ~~~~~~~ , so S = ~~ , , —l , 1

(R~~Xx) 
[*/(l- .9x

~j [0  -l 0

Solving the linear system

~~~~ 
X2 = 0

_
.1TA1 I~

.X
2 

— A3 A
4 

—

UA2 A3 —

A1 + A2 + A 3 + A 4 1

_ _ _ _  ____ _ _ _ __ _ _ _ _ _  
• 

-



-- — -

7

yields the sol ution A1 = ~
-, A

2 
= 

~
-, A~~ = 

~~~~~~, A
4 

= 
~~~~~. Since we have

A1 > 0 Vi , we have ~€.W(S), so R* is a best approximation.

We may observe that in this example 0 is a positive convex combination

of exactly m + n + 1 = 4 vectors in S, and the coefficient matrlx used is nonsingular.

Thus J~’Cramer ’s ru1e(6 1,6 2,6 3)T E ~/(S) if 16 1 1, I~ I~ 1631 are sufficientlysnal l,so

0 ls actually ihtle interior of I/(S); this distinction will be important in the

next two sections .

The next exampl e illustrates what can happen if our assumption that

max L(x) < mm igi1 (x) is violated .x€X xeX

EXAMPLE 2. Let X = [0, 1], P = = n~, L(x) 1, R*(x) = l/(1+.5x).

We have
O 0

-1 ~~S and 1 E S ,
O 0

so 0E~P~(S) regardless of whether R* is a best approximation to f or not.

Intuitively, the trouble is that we are Imposing a double restraint on the

denominator at x = 0 which ties it down completely there.

The next exampl e shows that the standard alternation characterization

of best approximations does not hold in our setti ng.

13.5x, 0 < x < l
EXAMPLE 3. Let X = [0, 3], f(x) = ~ 2 + 1.5x , 1 x ~ 2 , P = n0, Q =

- l.5x, 2 < x < 3

L(x) .2, R*(x) = 1/(1 - .8x + .2x2). We have X0 = {O, 1 , 3), V0 = {2} ,

{l), a(O) -1, a(l) = 1, o(3) = 1. The fact that R* is a best

approximation to f is shown by the equality

-1 1 1 0 0 0
4 -l + 3 2.5 + 1 2.5 ~~l5 -l ~ 3 1 — 0
17 0 17 2.5 17 7.5 ~4 -2 ~~ 0 -

0 2.5 22.5 —4 0 0

- —- - - -
. -~~~~~~~~~~~ 

-
~~~~~~~ :~~~~~~~~~i 1

-- —  ~~~~~~~--— -•—----~~~~~~~.•‘• --.-•-•--—-- - -•—— — -.- k_ •  ~~~~~~~~~~~~~~~ ~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ A
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Without denominator restrictions we would expect (m_l)+ (n_1)+2_min(m_l_degree of P*,

n-I-degree of Q*) = four alternating points for f - R* ; since there is only

one denominator restriction we might have hoped for three al ternating

extreme points, but there are only two. It is tempting to conjecture that

denominator constraints act as extreme points with “sign of error”

opposite that of the previous extreme point , but there are examples which

show that there may still be fewer than expected alternating extreme points .

Thus there does not appear to be a simple alternation theorem in this

setting. Some partial results under suitable Haar assumptions are possible;

however, they do not seem to add much insight.

3. Uniqueness and de La Vallée Poussin Results

Best approximations from need not be unique , as shown by the
following example. -

EXAMPLE 4. Let X = {O, 1), f(x) = x ,  P = n0, Q = 

~2’ L(x) .1,

R*(x) = ~1~/(l - .9x). We have X0 = (0, 1), V0 = (1 ), 10 = (1), a(0) = -1 ,

a(1)  = 1. Thus

= a(x) fr/(i::gx) , ~ = 

~~ T~ 
, [:~J. [

~
]

~ -/ (l-.9x) ‘IT -l 0

.1T
and R* Is shown to be a best approximation by the equality

1 1 1 10 10 1
~ 

- Ti- 
~~~~~ iT +~~~-l +

~~~ 1 = 0

0 10 -l 0 0
Ti-

0 , 10 0 0

L - _ _ _ _  _

L _________ 
-
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But R(x) = y-/(l + q2x + q3x
2) Is also a best approximation for any q2, q3

satisfying 1q21 ~~ . 1 1q 31 i i , q2 + q3 = -.9 since h f  - Rh = = h f - R*hI  .

It turns out uniqueness is assured if, unlike the situation in this

example, 0 is in the interior of~~ S). To prove this, we need the following

1 ema.

LE1~t4A 1. Suppose f e C[X] and R* E RL. Suppose X0 is an arbitrary compact

subset of X, and S is the S of earlier theorems with X0 replaced by X0. If

0 E int W(~), then P 0, ~ 0 is the only solution in P, ~ to the inequalities

(a) a(x)(P + R*~) ( x )  > 0 Vx € X0;

(b) ~(y) < 0 Vy €

(c) ~~ > 0 i f q~~= l ;

(d) <0 if q~ = -1.

Proof: Suppose PEP , Q EQ satisfy (a)-(d). Letting ~ = 
i~~ m,~r_~n 1T,

the system (a)-(d) may be rewritten as <z, s> > 0 Vs€ 5. Suppose that

there Is a $ ~ satisfying these inequalities. Since 0 €int W(~), for

6 > 0 sufficiently small we have -sz e W.(~ ). By Caratheodory ’s theorem

[2 , p. 17] for some integer k<m + n + 1 3 
~l’ ~~~~~~~~~ 

S
k
E

k k ~
“

A1, ... , A~ > 0 with ~~~ 1 such th:t —6 ~ = 
~~~

A
i
Si. Thus

—6< z , z> = <z , —52> = <z, ~ A .s. > = ~ A. <z , S.> > 0, which is a contradiction.
“ 1=1 14.i 1 1  ~ ~ —

Thus z = 
~~~, so P ~o, ~~~0.

Q.E.D.

Al though we will not use it In this paper, the converse of this lema

can also be shown to be true.

We can now prove uniqueness If e lnt~ 1(S).

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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THEOREM 4. Suppose f € C(X] - RL and R* = P*/Q*~~ RL. If 0 e int~~(S), then

R* is the unique best approximation to f from RL.

Proof: By Theorem 3, R* is a best approximation. Suppose R=P/Q € RL were

another best approximation. Let ~ =p _ p * , ~~Q* Q• For xEX0, we have

a(x)( P + R*~) ( x )  = ci(x)(P - R*Q)(x) = i(x)Q(x) [f(x) - R*(x)_ (f(x)_R(x))]~O.
For y EY0, we have

Q(y) = Q*(y) - Q(y) = 1(y) - Q(y) < 0.

Final ly, If q3 = 1, we have
q
~~

=q
~~- q ~~= l - q ~~> O

and if q~ = -1, we have

~~ = q ~~- q ~~= - l  - q ~~<0 .

Thus by Lema 1, P 0 and ~ 0. Thus P ~* and Q Q*, so R* is unique .
Q.E.D.

The next example shows that the converse of this theorem if false.

EXAMPLE 5. Let X = [0, 1], f(x) = 2 - 2x, P = = 
~~~~ 

1(x) .1, R*(x)

We have X0 = (0, 1), V0 = 
~~~ I~ = (1), S = 

~~ 
[1]~ [?]}. Here R* is the

unique best approximation , but 0 ~ m t  wts).
In general , we always have 0 ~ m t il(S) if R* is a best approximation

with = 0; the reason is that 0 Eint ’il(S) implies that the coefficients

of the best approximation are unique , but = 0 implies that for some ci with

0 < a < 1 , (c&P*)/(aQ*) is another best approximation in RL with different -

coefficients.

The hypotheses of Theorem 4 are actually sufficient to prove strong

uniqueness.

THEOREM 5. Suppose R* is a best approximation to f E C[X] wi th 0 E int~ /(S).

Then there is a constant y >0 such that for any REP ,, fif — R h I > h h f — R*I~
+ yhI R - R*Ih

_ _ 
_  

J
~~~~~~~~~~~~~~ _ _ _ _ _  ____  __
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Proof: (Sketch ) The proof fol lows the same general lines as the proof

of strong uniqueness in the setting where the denominator is merely required

to be positive ([2, p. 165]), with P - ~* playing the role of P in the

standard proof and Q* - Q playing the role of Q, and Lerna 1 of this

paper used in place of Lemmas 1 and 2 in [2]. The other major change is- that

the definition of c on p. l~~ of [2] is replaced by

c = inf{max[_a(x)(P+R*~)(x)] : ~ e P, ~ e Q, Q(y) < 0 Vy E Y0,

0 If q~ = 1 , 0 if q~ = -1,

max{ liP + R*QhI II P II hI~ hI} = 1);

the extra complication in the last equality of this defini tion is needed

since otherwise we could have lIP + R*QhI = 1 wi th IIQ II and hI~hh arbitrar ily

large.

Q.E.D.

We finish this section with two de La Val lée Poussin estimates, which

give lower bounds on error norms.

THEOREM 6. Suppose f eC[X] — R1, R~E RL (not necessarily a best approxi—
“a “a “I

mation), and X0$O is some compact subset of X. Suppose O€~./(S), where S is

the S of earlier theorems wi th X0 replaced by X0. Then inf( ll~ 
- Rh : RE R1}

> min{ff(x) - R*(x) I: x G~ 0}.

Proof: Wi thout loss of generality, we may assume f(x) ~ R*(X) Vx €

Suppose the concl usion of the theorem is false. Then 3R = P/Q e 
~L 

wi th

hI~ - Rh < m m n{ hf(x) - R*(x)h: x 6~ Q}. Let P P - P~, Q
Proceeding as in the proof of Theorem 4, we get

(a ’) a(x )( P + R*Q)(x) > 0  Yx

(b) Q (y)<O ~y€ ~V0;

Cc) ~~ > O I f q~~= l ;

I _ _
_  _  

- -~~~- -~~~- - - - -~~~~~~~~~~ - - -j- 

~~~:~~~
_

-
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(d) ~j c 0 i f q~~=-1. -

Since O Ef lt S) ,  Caratheodory ’s theorem ([2, p. 17)) Implies that for some
integer k < in + n + 1, 3 s1, ... , Sk 6 S, A1, .. ., 

~~~ ~ 0 wi th 
~ 

A~ = 1“a “a L=1
k

such that ~ A s = 0. Thus there are nonnegative indices u, v, w wi th
“a

u + v + w k such that + ~~~~~~~~ + ~~~~~~~~~~~~~~~~ = 0

where x1, .. ., x~ 6X0; ~i’ ~~

•

~~~~
‘ 

~~ 
€Y0; I1, ... , i

~~
eIo and = (ol (xL),

em(xt), R*(xL),~l (x&), ..., R*(xL)~pn(xL))
T. We will next show that

+ R*~)(xL) <0.

We have

~ 
A&a(XL)OI(X L) = 0 for I = 1 , ... ,

u t 1 v
= 

L=l u+LJ 
- for j = 1, ... , n, where

— ~~~~~~~ 
if j = I~ 6

A 4 
— -

~
‘~ 10 otherwise.

So we get

+ R*~)(x&) = 

L~l
L
~~ j~ 1~

1 j ~~~~ 
+ R*(x L)~~~ j 4?j (x L)]

= 

Jl i L~l
L L i ( 

L~~~ 
+ 

~~j [~~~A La(x L)R*(x L)4Ij (x L)]

= 0 + 
j~~1 3J 1  U+- % J  ~~~ 

- = 

~1
Au+L[~~1~j

i
~
sj(yL)] -

= ZA ~+~Q(y~) - ~~
Au+v+Lqt~~j ~ 

0

by properties (b)-(d), as claimed. But by property (a ’), this implies
A1 = ... = A u 

= 0. But this In turn Implies that 0E.IAS’), where
{~~(y): y E Y 0} U(ci~~~j: ~ € ‘o~

• Thus, If X0 2 (x E Xt If( x ) R*(x ))
h f - R*ll I as before, we have 0€ W(~a(x)~: x ~ X0) Li 3’). Thus, by

I 
_ _ _ _  

_ _ _ _ _ _ _  _ _ _ _ _

__

_ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _
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Theorem 3, R* is a best approximation to f. Thus inf{ h f - R h i : R €RL)

— Of - R*hI z maxlf(x) — R*(x) i > min{ If(x) - R* (x) h : x 6 X 0}, contradicting
xeX

the assumption that the conclusion of the theorem is fal se .

Q.E.D.

If we assume that 0 € m t  *~~)~ we can prove the following stronger

result.

THEOREM 7. Suppose f € CCX], R* = P*/Q* € P1 (not necessarily a best

approximation), and � 0 is some compact subset of X. Suppose 0Eint~ /(S),

• where ~ is the S of earlier theorems with X0 replaced by X0. Then for every

R = 

~
1
~

6
~~L wi th R ~ Rt we have max ( lf(x) - R(x) I : x E~ 0)

> min{lf(x) - R*(x)h: xE ’
~0}.

Proof: Suppose the concl usion is false. Let P P - P~, Q - Q.

Then 3 R€. RL with R ~ R* and max (hf(x) - R(x) I: x

< min{ If(x) - R*(x)h: x E Proceeding as in the proof of Theorem 4,

we get -

(a ”) a(x )( P + R*Q)(x) > 0 Yx ~
(b) ~(y) < 0 Vy E

(c) ~3 > 0 i f q~~= l ;

(d) ~~~c O i f q~~= -l .

Thus Lenina 1 implies P 0, ~ 0. Thus R R* , contrary to assumption.

Q.E.D.

We observe that Example 4 wi th X replaced by (0, .1, 1) and X0 = {O, 1)

shows that the conclusion of the theorem may fail if 0 ~ m t  W (s) .

-

L~~~~~ I~~I~~iii~~ i i i~~~~:~~~~~~~~~~~~ ~~i~~~I
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4. Computation of Best Approximations

The differential correction algori thm introduced by Cheney and Loeb

[3] and discussed further by Barrodale, Powell, and Roberts [1] can be

modified to compute approximations from 
~t by inserting extra constraints

to force Q(x) > .L(x). We have

ALGORITHM (Restricted-denominator differential correction - RDDC).
( 1) Choose P0/Q0E ~L’(ii) Having found 

~k’~k~ 
RL wi th hlf  — Rk Ih = 

~k’ choose 
~k+l ’ ~k+las a solution to the problem

lf(x)Q(x) - P(x)i -• minimize: max — ,~, ,
xGX

subject to: Iq~ I 
< 1 , j  = 1, . .., n, and Q(x) > 1(x) vx € X;

(ill) Continue until some stopping criterion is met.

One common stopping criterion is to stop when - 

~k+1~’~k 
< c

for some prescribed c > 0, selecting Rk+l as the approximation returned by

the algorithm if 
~k+l 

< 
~k 

and selecting Rk otherwise. A convenient way

of choosing P0/Q0, which often is considerably more efficient than making

some arbitrary choice such as P0/Q0 1/1 (see Lee and Roberts [5) for

numerical evicence in the unrestricted—denominator case), is to minimize

max(f(x)Q(x) - P(x)1 subject to Q(x) > L(x) V xEX and Iq •1 < 1  for
x€X
j = 1 , ... , n.

Using the techniques of Barrodale, Powel l , and Roberts [1], we prove

THEOREM 8. The RDDC algorithm converges monotonically and at least linearly.

n
Proof: Let M = max ~ I *3 (x)~ (thus hI Q ii c M  for all Q E Q  wi th I q i ~ 1).xeX j l  I
Suppose R k Is not a best approximation . Let R* be a best approximation wi th

a~— hI f_ R * h1 . L e t 6 — m I n L(x) > 0 .  We have
x.X

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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If(x)Qk+l (x) - Pk+l (x) f - ~kQk+1(x) f (x)Q*(x) - p*(x)i -max f 1 1~~~ < max A l

xeX ~4k~X1 xeX

= max{[If(x) - R*(x) I - Ak]Q.1~ x~
} 
~ 
[~* - 

~k~’ii 
<

.. Y x € X ,
Pk+l (x) Qk+l (x ) 6[if(x) - 

~k+l~~~ 

- 

~~~ Qk(~
) ~ - < 0

• Pk+l (x).. Yx E X , If(x) - 
~ ~I - 

~k 
< 0

~k+ltx ,

• 
~k+l 

< so the convergence is monotonic.

Yx G X, we have

Pk+l (x) 6 Qk (x) SIf(x) - 

~k+l~~~ 

- 

~k 
~~~ [~ * - 

~
k
~~WQ k+l (x) ~~ [~* -

62

~k+l 
Ak ~~~ [A* -

- - 
~~k 

- A*) 1 j~2(1~k 
-

.. A~4~ 
- A* 1 (1 - ~i7~

Ak -

• •  
~k 

converges at least linearly to ~~~~~ .

Q.E.D.

We observe that this theorem is stronger than the corresponding

• theorem in the unrestri cted-denomi nator case [1, Theorems 1 and 2] in

that It gives information on the rate of convergence, and finiteness of

X is not required to prove convergence. Finiteness of X Is required,

however, in order to run the algorithm In the usual way.

The following lemma was proved and used by Barrodale, Powell, and

Roberts [1] for the case P = n~~1 and ~ = 11n-l The Haar subspace

assumption of our l emma is equivalent to theIr assumptIon that

mln(m - 1 - degree of P*, n - 1 - degree of Q*) - 0, wI th ~* and Q*

having no common nonconstant factors in their setting.

~

- ‘ 

_  

-“-

~~~~~~~

• - - -
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LEMMA 2. Suppose X contaIns at least in + n + 1 dIstinct points and 
-

= P*/Q* ER0 {P/Q :P= p1e1 + ... + pmem E P, Q z q~~~ 1 
+ ... + 

~~~
Q > 0 on X , max Iq.~I = 1). Suppose that the space spanned by

l~,Jcn
tOl, ‘ 

6m’ R~j~1, ... , R~q~1~} is a Haar subspace of dImension m + n - 1;
that is, the space has dimension in + n - 1, and no nontrivial element øf

it has more than m + n - 2 dIstinct zeros in X. Then 30 > 0 such that for

all R = P/Q ER0 we have IIQ - 1 e fiR -

Proof: Dua and Loeb [4) prove this lemma in the case where X = [0, 1],

P = n~~1, and Q = 11n l’ but their proof requires these extra conditions
only In proving that if Q > 0 on X and P R*Q on X, then P P~ on X and

Q Q* on X. This fact, however, follows from an argument of the type

• given by Cheney [2, p. 165].

Q.E.D.

We can now prove quadratic convergence of the RDDC in some circumstances.

THEOREM 9. Suppose X contains at least in + n + 1 distinct points ,
= P*/Q* E R~ is a best approximation to f E CCX] — 

~
L, and the space

spanned by (Gi, ..., e,~, ~~~~ ..., ~~~~ Is a Haar subspace of dimension
m + n - 1. Suppose that either of the following two conditions holds :

or 

(A) Y0 = Ø

(B) 0 eint~~(S).

Then the rate of convergence of the restricted-denomi nator differential
correction algorithm is at least quadratic.

Proof: If some Rk is a best approximation the conclusion of the theorem
is true, so we assume this Is not the case.

I

_ _ _ _ _ _ _ _

- ~~~~~~~~~ -- — m~~~ 
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Then the approximations produced by the RDDC algori thm (except

possibly P0/%) satisfy the normalization max Iq~I = 1 , since otherwise
l~jcn

the (negative) minimum computed in step (Ii) of the algorithm could be

decreased by renormalization. Since we may also assume R* satisfi es

this normal izat ion , the hypotheses of Lemma 2 hold for R~ and

RkI k > 1. We now c la im that if condi t ion (A) holds , then R*
i s a best approximation to f from R~ . To see this , we note

that by Theorem 3 we have O€ ~ ’/ ({a(x )~: x € X 0}LI (q~~~~: i ~ I~})

(see introduction). If there were R = P/Q € R0 satisfying h f - Rh

< fif — R*hI , letting ?(x ) ~min(mi n L(x), mm Q(x)) we have R* €
x€X xeX

and R E Rj~, wi th Q* > and Q > ?~. But the convex hull statement above

and Theorem 3 now imply that R* is a best approximation from Rj~ which

Is a contradiction. Thus , if condition (A) holds , the strong uniqueness

of R* holds by a theorem in Cheney [2, p. 165], while if condition (B)

holds , strong uniqueness holds by Theorem 5. Wi th the strong uniqueness

of R* and the conclusion of Lemma 2 availabl e, the rest of the proof is as

given by Barrodale, Powell, and Roberts [1, Theorem 3].

Q.E.D.

As noted earlier , conditions (A) and (B) of thIs theorem are mutually

exclusive; Example 4 shows that they are not exhaustive. Under the

hypotheses of Theorem 9 the absolute values of the differences of the

coefficients of Rk and R* can be shown to be bounded by sequences which

converge quadratically to zero.

It is sometimes desirable to Ignore the function f at some points of

X , but still apply the denominator restrictions on all of X; the theory of

this paper goes through unchanged If the subset of X on which f is to be

- -
S - 

- -------------,• • • • • --.
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approximated is compact. This situation is illustrated in the following

example, where f is the desired magnitude squared response of a d1gita~
filter , and we do not wish to approximate f in the “transition band”

(.1, .11).

EXAMPLE 6. Let X = (0, .005, .01, .015 5},

(l~ O < x < .l 6
f(x) =~~undefined, .1 < x c  .11 , P = = { ~ a1cos(2ir(i — l)x) } ,

.11 < x 1 .5 1=1

1(x) .125. Applying the RDDC algorithm on a CDC CYBER 172, which has

roughly 14 digits of accuracy, we get (rounded to 5 places)

R*(x) (.34408+.35l85 cos 2irx + .08270 cos 4irx + .15552 cos 6irx

+ .31629 cos 8irx + .23541 cos 1O,rx) /(l.00000 + .27473 cos 2wx
- .56073 cos 4,rx - .04879 cos 6irx + .68555 cos 8irx + .37588 cos lOirx),

with ~ = .13945, X0 = (O~, .085 , .i~, .11 , .l25~, .2l5 , ~344, •345
F
,

.4O5 , .41 , .5~
} (where the sign indicates the sign of f - R*) , V0 = (.105},

— 
~1}. Nine iterations were requIred, wi th the quantities Ak - At (for

k = 0, 1, ..., 8) being approximately 1 x io 1, 8 x lO 2, 2 x 10 2, 1 x . -

4 x io4, 1 x l0 6, 8 x lO~~
2, 2 x ~~~~~~~~~~~~~~ 8 x lO

15; this sequence indicates

the eventual quadratic nature of the convergence, up to machine accuracy.

We finally remark that the theory of this paper can also be extended

to include restricted range conditions and a positive continuous multipl i-

cative weight function w; that is, we may further require the functions R

in B1 to satisfy R < u on X1 and R > £ on X2, where u and a are given

continuous functions defined on compact subsets X 1 and X2 of X , respectively.

and we wish to minimi ze hI w’(f - R)Il instead of h f - Rh . Th. set S must
be expanded to include the vectors of the form ~ (x)~ (x€ Z0). where

{x € X: R*(x) = u(x) or R*(x) t(x)} and

____ 

__________ _____ 
I -

~~~
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f - i  if R*(x) = u(x)
a(x)= S

(1 if R*(x) =

In this setting, the assumption max 1(x) < mm 
*1(x) must be replacedXEX XEX

by the assumption that there exists a member of B1 satisfying all the

restrictions (denominator and restricted range) strictly. The restric-

tions P < Q•u on X 1 and P > Q.t on X1 must be added to the RDDC algorithm ,

and in the expression to be minimized in steps (i) and (ii) P(x) must be

replaced by w(x)P(x). The results of this paper still hold essentially

as stated (with a few minor changes in the proofs) except for Theorems 2

and 9 and lemma 1; in Theorem 2 we must add the condition sgn(P+R*~)(x)=~(x)

Yx E Z0; in Lemma 1 we must add the condition ~(x)(P + R*~)(x) > 0 Vx €

and in Theorem 9 we must add to condition (A) either = 0, or f < u on

• X1 and f > £ on X2. For numerical examples in this extended setting, see

McCallig [6].

~~~~~~~~~~~~~~~~~~~
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